

 $A_d(0) = D_1;$ $C_{tot}(0) = D_2 / V_c;$ $A_T(0) = 0;$ $R_{tot}(0) = k_{syn} / k_{deg}.$

METHODS/RESULTS

CONCLUSIONS

Leonid Gibiansky, Ekaterina Gibiansky

QuantPharm LLC, North Potomac MD, USA (www.quantpharm.com)

BACKGROUND

TMDD equations were initially written and are used assuming 1:1 stoichiometry of drug-target binding even though many biological systems do not conform to this assumption. Specifically, this assumption is violated for monoclonal antibodies that have two identical binding sites. Although standard TMDD equations provide excellent fit of the observed data, it is of interest to derive correct equations and approximations that assume truebinding stoichiometry between the drug and the target.

OBJECTIVES

To derive the TMDD model and its approximations for biological systems with 2:1 and 1:2 stoichiometry of drug-target binding.

Drug has 2 binding sites Target has 1 binding site			Drug has 1 binding site Target has 2 binding sites		
$\frac{dC}{dt} = \frac{In(t) + I_{SS}k_{a'd} + k_{pp}A_T}{V_c} - (k_{at} + k_{pt})C$ $\frac{dC}{dt} = \frac{In(t) + I_{SS}k_{a'd} + k_{pp}A_T}{V_c} - (k_{at} + k_{pt})C$ $\frac{dR}{dt} = k_{pt}C \cdot N_c - k_{pp}A_T; A_T(0) = 0;$ $\frac{dA_T}{dt} = k_{pt}C \cdot N_c - k_{pp}A_T; A_T(0) = 0;$ $\frac{dR}{dt} = k_{syn} - k_{deg}R - 2k_{on}C \cdot R + 2k_{off}R_2C$ $-k_{on}RC \cdot R + k_{off}RC; R(0) = k_{syn}/k_{deg};$ $\frac{dR}{dt} = 2k_c C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$ $\frac{dR}{dt} = 2k_c C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$ $\frac{dR}{dt} = 2k_c C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$ $\frac{dR}{dt} = 2k_{m}C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$ $\frac{dR}{dt} = 2k_{m}C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$ $\frac{dR}{dt} = 2k_{m}C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$ $\frac{dR}{dt} = 2k_{m}C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$ $\frac{dR}{dt} = 2k_{m}C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$ $\frac{dR}{dt} = 2k_{m}C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$ $\frac{dR}{dt} = 2k_{m}C \cdot R - (k_{m} + k_{m})RC - k_{m}RC + 2k_{m}RC;$	C, R, RC, and R2C are concentrations of free (unbound) drug, target, and drug complexes with one or two target molecules; \mathbf{k}_{el} is linear elimination rate constant, \mathbf{k}_{pt} and \mathbf{k}_{tp} are inter-compartment rate constants, \mathbf{k}_{off} , and \mathbf{k}_{int} are binding, dissociation, and internalization (elimination of the complex) rate constants; \mathbf{k}_{deg} and \mathbf{k}_{syn} are degradation (elimination of the target) and target production rate constants; \mathbf{V}_{C} is central volume; $\mathbf{In(t)}$ is the infusion rate; \mathbf{F}_{SC} is absolute subcutaneous bioavailability. $\mathbf{K}_{D} = k_{off}/k_{on}$; $\mathbf{K}_{IB} = k_{int}/k_{on}$		$\begin{split} \frac{dA_d}{dt} &= -k_a A_d; A_d(0) = D_1; \\ \frac{dC}{dt} &= \frac{\ln(t) + F_{SC}k_a A_d + k_{gp} A_T}{V_c} - (k_{cl} + k_{pl})C \\ - 2k_{on}C \cdot R + k_{off}RC - k_{on}C \cdot RC + 2k_{off}RC_2; C(0) = D_2 / V_c; \\ \frac{dA_T}{dt} &= k_{pr}CV_c - k_{tp}A_T; A_T(0) = 0; \\ \frac{dR}{dt} &= k_{opn} - k_{deg}R - 2k_{on}C \cdot R + k_{off}RC; R(0) = k_{opn} / k_{deg}; \\ \frac{dRC}{dt} &= 2k_{on}C \cdot R - (k_{int} + k_{off})RC - k_{on}C \cdot RC + 2k_{off}RC_2; \\ \frac{dRC_2}{dt} &= k_{on}C \cdot RC - (k_{int} + 2k_{off})RC_2; RC(0) = RC_2(0) = 0. \end{split}$	Full model C , R , RC , and RC ₂ are concentrations of free (unbound) drug, ta and target complexes with one or two drug molecules; \mathbf{k}_{el} is linear elimination rate constant, \mathbf{k}_{pt} and \mathbf{k}_{tp} are inter-compartment rate constants, \mathbf{k}_{on} , \mathbf{k}_{off} , and \mathbf{k}_{int} are binding, dissociation, and internalization (elimination of the complex) rate constants; \mathbf{k}_{deg} and \mathbf{k}_{syn} are degradation (elimination of the target) and target production rate constants; \mathbf{V}_{C} is central volume; $\mathbf{In}(\mathbf{t})$ is the infusion rate; \mathbf{F}_{SC} is absolute subcutaneous bioavailability. $\mathbf{K}_{D} = k_{off}/k_{on}$; $\mathbf{K}_{IB} = k_{int}/k_{on}$	
QSS assumptions: $2k_{on}C \cdot R - (k_{int} + k_{off})RC - k_{on}R \cdot RC + 2k_{off}R_2C = 0;$ $k_{on}R \cdot RC - (k_{int} + 2k_{off})R_2C = 0.$ Equivalent to: $2 \cdot C \cdot R = (K_D + K_{IB})RC + K_{IB}R_2C,$ $R \cdot RC = (2K_D + K_{IB})R_2C$ Defining C _{tot} and R _{tot} as $C_{tot} = R + RC + R_2C$ $R_{tot} = R + RC + 2R_2C$ results in: $C = C_{tot} \frac{(K_D + K_{IB})(K_D + K_{IB}/2) + K_{IB}R/2}{(K_D + K_{IB} + R)(K_D + K_{IB}/2) + K_{IB}/2};$ $RC = C_{tot} \frac{R(2K_D + K_{IB})}{(K_D + K_{IB} + R)(K_D + K_{IB}/2) + R_{IB}};$	Simulations : Concentration-time profiles from the full TMDD model and the corresponding QSS approximation were simulated for 3 dosing regimens: 100 mg IV, 600 mg IV, and 100 mg SC (2 doses). CL=0.3; V _c =3; V _p =3; Q=0.2; k _a =0.5; F _{SC} =0.7; k _o =25; k _{off} =1; ; k _{inf} =0.01; k _{syn} =1; k _{deg} =10. Simulations demonstrated a good agreement between exact and approximate equations, except for free target at very low concentrations. Additional investigations are planned to investigate applicability of this approximation across the range of system parameters.		QSS assumptions: $2k_{orr}C \cdot R - (k_{int} + k_{off})RC - k_{orr}C \cdot RC$ $k_{orr}C \cdot RC - (k_{int} + 2k_{off})RC_{-} = 0.$ Equivalent to: $C \cdot R = (K_D + K_{IB})RC/2 + K_{IB}RC_{-}/2$ $C \cdot RC = (2K_D + K_{IB})RC_{-}.$ Defining C_{tot} and R_{tot} as $R_{tot} = R + RC + RC_{-}/2$ $(K_D + K_{IB} + C)(K_D + K_{IB}/2) - K_{IB}/2$ $RC = R_{tot} \frac{(K_D + K_{IB})(K_D + K_{IB}/2) + K_{IB}/2}{(K_D + K_{IB} + C)(K_D + K_{IB}/2) - K_{IB}/2}$	2. $C_{tot} = C + RC + 2RC_2$ $\frac{gC/2}{+C};$ $\frac{C}{+C};$	Simulations : Concentration-time prof the full TMDD model and the correspo QSS approximation were simulated fo dosing regimens: 100 mg IV, 600 mg I 100 mg SC (2 doses). CL=0.3; V _c =3; V _p =3; Q=0.2; k _a =0.5; 1 k _o =25; k _{off} =1; k _{im} =0.01, k _{syn} =1; k _{deg} =1 Simulations demonstrated a good agre between exact and approximate equati some deviations at low concentrations Additional investigations are planned investigate applicability of this approx across the range of system parameters.
$R_{1}C = C_{nar} \frac{\kappa}{(K_{D} + K_{IB} + R)(K_{D} + K_{IB}/2 + R)}.$ $R = \frac{1}{2} \left[-\left(2C_{tot} + K_{D} + K_{IB} - R_{tot}\right) + \sqrt{\left(2C_{tot} + K_{D} + K_{IB} - R_{tot}\right)^{2} + 4(K_{D} + K_{IB})R_{tot}} \right]$ QSS approximation $\frac{dA_{d}}{dt} = -k_{a}A_{d};$ $\frac{dA_{d}}{dt} = k_{a}C\cdot V_{c} - k_{b}A_{f};$ $\frac{dA_{d}}{dt} = k_{a}C\cdot V_{c} - k_{b}A_{f};$ $\frac{dA_{d}}{dt} = k_{a}C\cdot V_{c} - k_{b}A_{f};$ $\frac{dA_{d}}{dt} = k_{a}R_{a}C\cdot V_{c} - k_{b}A_{f};$ $\frac{dA_{d}}{dt} = k_{a}R_{a} - k_{b}R_{b} - k_{b}R_{b} - k_{b}R_{b};$ $\frac{dA_{d}}{dt} = k_{a}R_{a} - k_{b}R_{b} - k_{b}R_{b} - k_{b}R_{b};$ $\frac{dA_{d}}{dt} = k_{a}R_{a} - k_{b}R_{b}R_{b} - k_{b}R_{b};$ $\frac{dA_{d}}{dt} = k_{a}R_{a} - k_{b}R_{b}R_{b} - k_{b}R_{b};$ $\frac{dA_{d}}{dt} = k_{a}R_{a} - k_{b}R_{b} - k_{b}R_{b};$ $\frac{dA_{d}}{dt} = k_{a}$	Per Brage Trans Target Trans Target		$RC_{i} = R_{iot} \frac{C^{2}}{(K_{D} + K_{IB} + C)(K_{D} + K_{IB})^{2}}$ $C = \frac{1}{2} \Big[(C_{iot} - 2R_{iot} - K_{D} - K_{IB}) + \sqrt{(C_{iot} - 2R_{iot} - K_{D} - K_{IB})^{2}} \\ \frac{QSS \text{ approximation}}{dt} = -k_{a}A_{a};$ $\frac{dC_{iot}}{dt} = \frac{ln(t) + F_{SC}k_{a}A_{d} + k_{ip}A_{T}}{V_{c}} - (k_{oi} + k_{pi})C - k_{int} \frac{2R_{iot}}{K_{D} + K_{IB}} \\ \frac{dA_{f}}{dt} = k_{pi}C \cdot V_{c} - k_{ip}A_{T};$ $\frac{dA_{r}}{dt} = k_{pin} - k_{deg}R_{iot} - (k_{int} - k_{deg}) \cdot R_{iot} \cdot \frac{C \cdot (2K_{D} + K_{IB})}{(K_{D} + K_{IB} + C)(K_{D} + K_{IB})} \\ A_{d}(0) = D_{i}; C(0) = D_{2}/V_{c}; A_{f}(0) = 0; R_{iot}(0) = k_{syn} / k_{ds} $	$\frac{C_{IB}}{(E_{IB})^2} + 4(K_D + K_{IB})C_{rot}$	Proc Dog Proc D

MM approximation is obvious, $C_{tot} = C$, and not shown

ACoP 2015, October 4-7, Crystal City, VA, USA

detailed and precise description of the TMDD systems with 1:2 and 2:1 binding stoichiometry than those of the standard TMDD model. tes rations of free (unbound) drug, target, r two drug molecules; stant. nt rate constants.

TMDD equations for systems with 2:1 and 1:2 drug target binding were formulated. Quasi-steady state (QSS) assumptions were applied to

derive QSS approximations of these systems. QSS systems with zero internalization rate ($k_{inn}=0$) or zero dissociation rate ($k_{on}=0$) correspond

to quasi-equilibrium (QE) or irreversible binding (IB) approximations of the TMDD equations. Michaelis-Menten (MM) approximations

QSS, QE, IB, and MM approximations of the TMDD models with 1:2 and 2:1 binding were derived. They can be used to provide a more

were derived assuming that concentrations of the drug-target complexes are much smaller than concentrations of the free drug.

\mathbf{k}_{deg} and \mathbf{k}_{syn} are dependent of the production rate con	he; $In(t)$ is the infusion rate; F_{SC} is absolute
$K_{D} = k_{off} / k_{on}; K_{IB} = k$	_{in/} /k _{on}
$RC + 2k_{aff}RC_z = 0,$	Simulations: Concentration-time profil

iles from full TMDD model and the corresponding approximation were simulated for 3 ng regimens: 100 mg IV, 600 mg IV, and mg SC (2 doses). =0.3; V_C=3; V_P=3; Q=0.2; k_a=0.5; F_{SC}=0.7; 25; k_{off}=1; k_{int}=0.01, k_{syn}=1; k_{dee}=10. ulations demonstrated a good agreement veen exact and approximate equations, with e deviations at low concentrations. itional investigations are planned to stigate applicability of this approximation is the range of system parameters.

